Interplay between autophagy and programmed cell death in mammalian neural stem cells
نویسندگان
چکیده
Mammalian neural stem cells (NSCs) are of particular interest because of their role in brain development and function. Recent findings suggest the intimate involvement of programmed cell death (PCD) in the turnover of NSCs. However, the underlying mechanisms of PCD are largely unknown. Although apoptosis is the best-defined form of PCD, accumulating evidence has revealed a wide spectrum of PCD encompassing apoptosis, autophagic cell death (ACD) and necrosis. This mini-review aims to illustrate a unique regulation of PCD in NSCs. The results of our recent studies on autophagic death of adult hippocampal neural stem (HCN) cells are also discussed. HCN cell death following insulin withdrawal clearly provides a reliable model that can be used to analyze the molecular mechanisms of ACD in the larger context of PCD. More research efforts are needed to increase our understanding of the molecular basis of NSC turnover under degenerating conditions, such as aging, stress and neurological diseases. Efforts aimed at protecting and harnessing endogenous NSCs will offer novel opportunities for the development of new therapeutic strategies for neuropathologies.
منابع مشابه
Apoptosis, Autophagy, and Necrosis in Murine Embryonic Gonadal Ridges and Neonatal Ovaries: An Animal Model
Background: In mammalian ovaries, loss of over two-thirds of germ cells happens due to cell death. Nonetheless, the exact mechanism of cell death has yet to be determined. The present basic practical study was designed to detect 3 types of programmed cell death, namely apoptosis, autophagy, and necrosis, in murine embryonic gonadal ridges and neonatal ovaries.Methods: Twenty gonadal ridges and ...
متن کاملGhrelin protects adult rat hippocampal neural stem cells from excessive autophagy during oxygen-glucose deprivation.
Ghrelin functions as a neuroprotective agent and saves neurons from various insults include ischemic injury. However, it remains to be elucidated whether ghrelin protects neuronal cells against ischemic injury-induced excessive autophagy. Autophagy is required for the maintenance of neural stem cell homeostasis. However, regarding autophagic cell death, it is commonly assumed that excessive aut...
متن کاملMediation of Autophagic Cell Death by Type 3 Ryanodine Receptor (RyR3) in Adult Hippocampal Neural Stem Cells
Cytoplasmic Ca(2+) actively engages in diverse intracellular processes from protein synthesis, folding and trafficking to cell survival and death. Dysregulation of intracellular Ca(2+) levels is observed in various neuropathological states including Alzheimer's and Parkinson's diseases. Ryanodine receptors (RyRs) and inositol 1,4,5-triphosphate receptors (IP3Rs), the main Ca(2+) release channel...
متن کاملتأثیر آنتی-آپوپتوتیک سلژلین بهعنوان بازدارندهی مونو آمین اکسیداز بر سلولهای بنیادی عصبی مشتق شده از هیپوکمپ موش صحرایی در شرایط آسیب اکسیداتیو
Background and Objective: Damaged and inflammatory cells in the nervous system produce reactive oxygen species (ROS). The overproduction of ROS can cause serious damage to important biomolecules and over activation of programmed cell death leads to many progressive neurodegenerative disorders. The aim of this study was to evaluate the effects of selegiline on inhibition of apoptosis in oxidativ...
متن کاملAutophagy in cell death: an innocent convict?
The visualization of autophagosomes in dying cells has led to the belief that autophagy is a nonapoptotic form of programmed cell death. This concept has now been evaluated using cells and organisms deficient in autophagy genes. Most evidence indicates that, at least in cells with intact apoptotic machinery, autophagy is primarily a pro-survival rather than a pro-death mechanism. This review su...
متن کامل